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Testing association patterns: issues arising and extensions
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A reasonable necessary condition for a population to
be socially structured is that individuals associate in

a nonrandom fashion. Thus, testing for preferred or
avoided companions is a fundamental step in analyses
of social structure (Whitehead & Dufault 1999). Cluster
analyses, sociograms and their ilk (e.g. Morgan et al. 1976)
all assume nonrandom associations, and if associations are
random, none of these mean anything.
Unfortunately testing nonrandom association on real

data is not simple. A suitable test statistic is the standard
deviation of the association indexes, which will be higher
than expected if individuals have preferred or avoided
associates. But what is ‘expected’ in the case of no
preference or avoidance? The distributions of the standard
deviation of association indexes, or any other suitable test
statistic, are not analytically tractable under the null
hypothesis. A solution is to use permutation tests in
which the association data are randomized many times
subject to certain constraints, each time calculating the
test statistic (Manly 1997). The mean of these randomized
test statistics can be considered its ‘expected value’, and
a P value is then calculated as the proportion of times that
the permuted statistics are more extreme than the real test
statistic. A number of analyses of animal social structure
have taken this approach (e.g. Whitehead et al. 1982;
Smolker et al. 1992; Slooten et al. 1993; Pepper et al.
1999). However, it was not easy to design an efficient
computational routine that randomly permutes the re-
cords of which individuals were found in which groups in
such a way that the number of individuals in each group
and the number of groups containing each individual are
both held constant. There are conceptual difficulties with
such tests (Manly 1997).
However, using a routine developed by Manly (1995) for

an ecological problem, Bejder et al. (1998) showed how an
individual by group 1:0 matrix could be permuted simply
while keeping constant both the number of animals in
each group and the number of groups in which each
animal was identified. In their procedure (referred to as
the MBFB method), at each step, two individuals and two
groups are chosen so that each individual is identified in
just one of the groups, and each group contains just one of
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the individuals. Then the four group–individual assign-
ments are switched (the individual in group A is now in
group B and vice versa; Table 1). We will call this a ‘flip’.
The flipping procedure preserves the totals for each group
and individual. Permutations produced with flips are not
independent, but Manly (1995) showed that this does not
matter as long as sufficient flips are carried out (typically
many greater than the 1000 or so that are usual for
permutation tests). In the MBFB method, after each flip in
the group–individual matrix, the test statistic is calculated,
and so a distribution of ‘random’ test statistics is produced
from which the P value is calculated.
If animals are recruited to the population, die, or

migrate to or from the study area during the study, then
the MBFB method could suggest significant preference/
avoidance just because some pairs of animals shared time
together in the study area and others did not. To remove
such demographic effects, Whitehead (1999) suggested
that the flips only be carried out within temporal
‘sampling periods’ within which demographic events
are unlikely (Table 2). Another possible modification
(Whitehead 1999) is to make flips within 1:0 symmetric
association matrices (symmetric in the sense that the
association between individuals A and B is the same as
that between B and A) for each sampling period (Table 3),
thus permitting tests for preferred/avoided companion-
ship between sampling periods when groups are not
defined but associations are defined (e.g. from nearest-
neighbour distances; temporal synchrony in behaviour; or
dyadic interactions such as grooming behaviour). We call
the original MBFB method total-matrix permutation, and
Whitehead’s (1999) two modifications within-period per-
mutation and between-period permutation, respectively.
One useful attribute of the MBFB method and its

modifications is that P values can also be calculated for
each dyad, so that it is possible to test whether the
members of that particular dyad associate preferentially,
or avoid one another, against the null hypothesis that
there is no particularly strong or weak association. This is
done by calculating the proportion of random dyadic
association indexes (i.e. after each flip) that are greater
than the real association index for that dyad.
The MBFB method has been used in 14 peer-reviewed

published papers on species ranging from Spix’s disc
winged bats, Thyroptera tricolour, to chimpanzees, Pan
troglodytes, to sperm whales, Physeter macrocephalus. Of
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Table 1. One flip in the process of permuting a group–individual
matrix by the total-matrix permutation method (from Whitehead
1999)

Individuals Individuals

Group A B C D E F G Group A B C D E F G

a 1 1 0 0 0 0 0 0 a 1 1 0 0 0 0 0
b 1 1 1 1 0 0 0 b 1 1 1 1 0 0 0
c 1 1 0 0 0 0 0 c 1 1 0 0 0 0 0
d 1 1 1 1 0 0 0 d 1 1 1 1 0 0 0
e 0 0 1 0 1 1 1 e 0 0 1 0 1 1 1
f 0 0 1 0 0 1 1 f 0 0 1 0 0 1 1
g 0 0 0 0 1 1 1 g 0 0 0 0 1 1 1
h 0 0 0 0 0 1 1 h 0 0 0 0 0 1 1
i 0 1 0 0 0 0 1 i 0 1 0 0 0 0 1
j 0 1 0 0 0 1 1 j 0 1 0 0 0 1 1
k 0 1 0 0 0 1 0 k 1 1 0 0 0 0 0
l 1 0 1 0 0 0 0 l 1 0 1 0 0 0 0
m 0 0 1 0 1 0 0 m 0 0 1 0 1 0 0
n 1 0 0 0 1 0 0 n 1 0 0 0 1 0 0
o 1 0 0 0 1 0 0 o 1 0 0 0 1 0 0
p 0 0 1 1 0 0 0 p 0 0 1 1 0 0 0
q 1 0 0 1 0 0 0 q 1 0 0 1 0 0 0
r 1 0 1 1 0 0 0 r 0 0 1 1 0 1 0
s 1 0 1 1 1 0 0 s 1 0 1 1 1 0 0
t 0 0 1 0 1 0 0 t 0 0 1 0 1 0 0

The matrix on the left, showing which groups contained which
individuals, was modified by randomly choosing two individuals and
two groups (with each individual in only one of the groups and each
group containing only one of the individuals) and switching
assignments (bold) to preserve row and column totals.

Table 2. One flip in the process of permuting a group–individual
matrix by the within-period permutation method in which de-
mographic effects are controlled (from Whitehead 1999)

Individuals Individuals
Group A B C D E F G Group A B C D E F G

a 1 1 0 0 0 0 0 0 a 1 1 0 0 0 0 0
b 1 1 1 1 0 0 0 b 1 1 1 1 0 0 0
c 1 1 0 0 0 0 0 c 1 1 0 0 0 0 0
d 1 1 1 1 0 0 0 d 1 1 1 1 0 0 0

e 0 0 1 0 1 1 1 e 0 0 1 0 1 1 1
f 0 0 1 0 0 1 1 f 0 0 1 0 0 1 1
g 0 0 0 0 1 1 1 g 0 0 0 0 1 1 1
h 0 0 0 0 0 1 1 h 0 0 0 0 0 1 1

i 0 1 0 0 0 0 1 i 0 1 0 0 0 0 1
j 0 1 0 0 0 1 1 j 0 1 0 0 0 1 1
k 0 1 0 0 0 1 0 k 0 1 0 0 0 1 0

l 1 0 1 0 0 0 0 l 1 0 1 0 0 0 0
m 0 0 1 0 1 0 0 m 0 0 1 0 1 0 0
n 1 0 0 0 1 0 0 n 1 0 0 0 1 0 0
o 1 0 0 0 1 0 0 o 1 0 0 0 1 0 0

p 0 0 1 1 0 0 0 p 0 0 1 1 0 0 0
q 1 0 0 1 0 0 0 q 0 0 0 1 1 0 0
r 1 0 1 1 0 0 0 r 1 0 1 1 0 0 0
s 1 0 1 1 1 0 0 s 1 0 1 1 1 0 0
t 0 0 1 0 1 0 0 t 1 0 1 0 0 0 0

The data were collected in five sampling periods, separated by line
spaces. At this step, the fifth sampling period was randomly chosen,
and within it, the matrix was modified by randomly choosing two
individuals and two groups and switching assignments (bold), to
preserve row and column totals within the sampling periods.
these implementations of the MBFB method, 13 have used
the MATLAB program package SOCPROG, written by one
of us (H.W.). Twelve, eight and two published papers have
used the total-matrix permutation, the within-period
permutation and the between-period permutation meth-
ods, respectively.

Since writing the original papers on the MBFB method
(Bejder et al. 1998) and its modifications (Whitehead
1999), and having reviewed studies that use the method,
we have become aware of some important conceptual and
computational issues, and have developed two extensions
to the method. These are considered in this paper, and, in
most cases, are incorporated into the latest version of
SOCPROG (http://is.dal.ca/~hwhitehe/social.htm).

Conceptual Issues

Test statistics
Bejder et al. (1998) used the median of half-weight

association (Cairns & Schwager 1987; Ginsberg & Young
1992) indexes as their test statistic (calculated for the real
data, and after each flip). This could be appropriate if the
alternative to the null hypothesis is that there are more
dyads with strong relationships than would be expected
when animals associated randomly. However, medians are
computationally expensive to calculate and we may also
be interested in whether there are dyads that actively
avoid one another. In ‘sparse’ data sets, with many
individuals and rather few groups, the median will often
be zero, making the test redundant. Other test statistics
may be more powerful, and sometimes the use of two or
more statistics may be warranted. For instance, when
using the within-period variant of the MBFB method
(Whitehead 1999), it may be possible to use two different
test statistics to examine randomness of association
within and between sampling periods, respectively.

We examined the performance of five possible test
statistics for use in testing nonrandom associations within
and between sampling periods: (1) the mean of
all pairwise association indexes (AIs); (2) the standard

Table 3. One flip in the process of permuting an association matrix
by the between-period permutation method (from Whitehead 1999)

Individual Individual

A B C D E F G H A B C D E F G H

A d 1 0 0 0 1 0 1 0 A d 1 0 1 0 1 0 0
B 1 d 1 1 0 0 1 1 B 1 d 1 1 0 0 1 1
C 0 1 d 1 1 1 1 0 C 0 1 d 0 1 1 1 1
D 0 1 1 d 0 1 0 0 D 1 1 0 d 0 1 0 0
E 0 0 1 0 d 0 1 1 E 0 0 1 0 d 0 1 1
F 1 0 1 1 0 d 0 0 F 1 0 1 1 0 d 0 0
G 0 1 1 0 1 0 d 1 G 0 1 1 0 1 0 d 1
H 1 1 0 0 1 0 1 d H 0 1 1 0 1 0 1 d

A sampling period is randomly chosen, and the associations within
the sampling period, shown in the symmetric 1:0 matrix on the left,
are modified by randomly choosing two pairs of individuals (D and
H; A and C) so that each individual is associated with only one
member of the other pair. The associations between these pairs
(bold) are switched, preserving row (and column) totals.

http://is.dal.ca/~hwhitehe/social.htm
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deviation of all AIs; (3) the proportion of nonzero AIs; (4)
the mean of nonzero AIs; and (5) the standard deviation of
nonzero AIs. We used the ‘simple-ratio’ association index
(AI) throughout (Cairns & Schwager 1987; Ginsberg &
Young 1992).
Data sets were generated in MATLAB (the Mathworks,

Natick, Massachusetts, U.S.A.) to simulate identification
records for a population of 150 individuals, observed in
groups over 15 sampling periods. In each sampling period,
the number of groups observed was Poisson distributed
with a mean of 7, and all individuals in each observed
group were identified. Data sets with these characteristics
were constructed to simulate three social scenarios: (1)
random associations; (2) short-term preferences; and (3)
long-term companionships. In the first scenario, each
observed group was equally likely to contain 10, 20 or
30 individuals, with individuals randomly selected for
each group. To simulate short-term preferences, individu-
als were assigned to ‘parties’ of 10 individuals for each
sampling period; each group was equally likely to be
composed of one, two or three parties, with parties
randomly selected for each group. To simulate long-term
companionships, individuals were assigned to ‘units’ of 10
individuals whose membership persisted across all sam-
pling periods (the whole study); each group was equally
likely to be composed of one, two or three units, with
units randomly selected for each group. Ten simulated
data sets were generated under each social scenario. Both
the within-period and between-period permutation meth-
ods were used on each simulated data set, and P values
calculated for each of the five test statistics (1000 permu-
tations). Useful test statistics were those that had consis-
tently low P values when the tested attribute was present
in the data set, but few false positives (indicated by
P! 0.05) when it was not.
The best indicators of nonrandom relationships within

periods appear to be an unexpectedly low proportion of
nonzero AIs (10/10 P values ! 0.02 when testing short-
term preference data sets, no false positive findings when
testing the random associations data sets) and an un-
expectedly low mean of all AIs (10/10 P values ! 0.01
when testing short-term preference data sets, two false
positive findings (0.039, 0.049) when testing random
associations data sets). If there are preferred or avoided
companions within periods, then the real statistics should
be low compared with the ‘random’ statistics generated by
permuting data sets within periods. This is because in the
real data there will be proportionally more pairs of
individuals that are repeatedly grouped (redundantly from
the perspective of calculating AIs) and thus, because the
number of animals in each group is constrained, propor-
tionally fewer pairs that are grouped, so decreasing the
proportion of nonzero AIs, and the mean association
index. Our simulations suggested that the mean of non-
zero AIs may not be reliable as an indicator of within-
period preferences when between-period preferences are
also present (10/10 P values ! 0.02 when testing short-
term preference data sets, but highly variable P values
when testing long-term companionship data sets).
A standard deviation of nonzero AIs that is higher than

the ‘random’ nonzero standard deviations of data sets
permuted between periods may be the best indicator of
companionships that persist across sampling periods (10/
10 P values ! 0.01 when testing long-term companion-
ship data sets, no false positives for random or short-term
preference data sets). The standard deviation of all AIs was
also successful in indicating when these longer-term
companionships existed (10/10 P values ! 0.01), but
was more prone to false positive readings when calculated
for the random and short-term preference data sets. The
possibility of false positive findings uncovered for some of
the test statistics underscores the importance of repeating
the permutation tests a few times on the same data set to
check for stability.
We have recently realized that a low mean of the AIs,

produced by short-term preferences, will also tend to
lower the standard deviation of the AIs, and thus mask
the presence of long-term preferences. Using the coeffi-
cient of variation of the AIs (standard deviation divided by
mean) as a test statistic for long-term preferences, in place
of their standard deviation, should compensate for this
effect, but we have yet to investigate this.

Dyadic P values
In a few cases in the published literature, as well as in

unpublished studies that we have reviewed, the dyadic P
values from the MBFB method have been considered to be
measures of the strength of an association between pairs
of individuals and used as the data for further analyses
(e.g. Lusseau et al. 2003 constructed a sociogram using
dyadic P values). This is conceptually invalid because the
size of a P value depends not only on the strength of
the association between two individuals but also on the
amount of available data (number of groups and/or
sampling periods examined), and, in the case of the MBFB
method and its modifications, the structure of the data:
there may be few possible flips that use the data for some
dyads, and many possibilities for others, affecting poten-
tial ranges and powers of dyadic P values. For this reason,
coupled with the computational challenges of obtaining
precise dyadic P values (see below), dyadic P values should
not be used as a measure of the strength of the relation-
ship between two animals. This is the purpose of the
association index itself, and the dyadic P values are only
guides as to the weight that should be placed on
particularly high or low indexes (Johnson 1999). Many
standard association indexes are affected by sample size,
so that a pair of individuals seen often will have a higher
association index than those seen rarely, even though
each pair might have the same probability of being
together given that they are both observed. To remove
such effects, one can use an association index that does
not have this property (e.g. the number of sampling
periods during which a dyad was associated divided by
the total number of sampling periods both individuals
were identified; Christal & Whitehead 2001), or the ratio
of observed to expected values of the association index
(Pepper et al. 1999), with expected values calculated by
randomization, perhaps using the MBFB method. The
latter approach also standardizes for overall differences in
sociality among individuals.
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Computational Issues

Number of flips per permutation
In the original MBFB method, association indexes and

test statistics are calculated after each nonindependent
flip. Because a large part of the time taken for each flip is in
the calculation of association indexes and test statistics,
we examined the possibility of only making these calcu-
lations every n flips: the routine makes n flips, then
calculates the association indexes and test statistics, giving
fewer but less autocorrelated random test statistics.
For a variety of randomly produced data sets, and 1, 10,

100 or 1000 flips per permutation, we calculated the
overall (using the SD of simple-ratio association indexes)
and dyadic P values ( pj, j Z 1, ., r) for r Z 5 or r Z 10
replicate runs (r Z 5 runs for more time-intensive analy-
ses) over a set amount of time (t, in seconds). These P
values were compared with ‘baseline’ P values from
running the routine with 100 flips per permutation, over
100 ! t s (PB). The root mean square errors (RMSE) were
calculated as:

RMSEZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X�
pj � PB

�2

=r
�r

RMSEs were calculated for both the overall test statistic, and
the dyadic P values (taking the mean over all dyads). The
results are presented in Fig. 1.
These results show that for the SOCPROG routines

implemented on MATLAB, using anywhere between 10
and 1000 flips per permutation ismuchmore efficient than
calculating tests statistics after each permutation (Fig. 1).
The optimal number seems to vary between data sets and
analytical techniques, and will also vary with the compu-
tational routines used, but 100 seems to be a good general
compromise for the SOCPROG routines. Using 10–1000
flips per permutation is generally very muchmore efficient
(in terms of P value precision per unit of processing time)
than the original procedure with one flip per permutation.

Calculation of dyadic P values
It is clear from Fig. 1 that dyadic P values are often, but

not always, considerably less precise than overall P values.
This results from each flip only affecting two individuals
(or four in the case of flipping symmetric association
matrices). For instance, with 32 individuals in a popula-
tion, on average only one in every 16 flips (or one in eight
flips with symmetric association matrices) will affect
a particular dyadic P value. Users should be aware of this,
and only use dyadic P values when the number of
permutations is sufficient to stabilize dyadic P values.

Extensions

Between classes
The MBFB method and its modifications examine the

possibility of preferred/avoided associations within sym-
metric association matrices; in other words, among all
individuals in a defined population. Individuals can often
be allocated to classes, by age, gender, mitochondrial
haplotype or some other attribute. Schnell et al. (1985)
showed how to use the Mantel test to investigate whether
associations between individuals of different classes are
different from those between members of the same class.
This question can also be addressed when animals are not
individually identified but can be allocated to classes (e.g.
Underwood 1981). A different, but related, issue intro-
duced by Hemelrijk (1990) is a test for associations
between two classes of individuals. For instance, one
might ask: ‘do males preferentially associate with or avoid
certain females’? The MBFB method can be modified to
consider such questions.

Total-matrix and within-period permutation methods. In
these cases, flips are only made within the ‘to’ class of
individuals; the females in the putative example (see
Table 4).

Between-period permutation method. In this case, flips are
only carried out within the part of the 1:0 association
matrix that represents associations between the two
classes; the males–females section in the putative example
(see Table 5).

When testing for between-class preferences, using any
of the three permutation methods, test statistics are only
calculated for the association indexes between individuals
of the two classes.

Tests for differences in overall gregariousness
The MBFB method and its modifications test for pre-

ferred or avoided associations. However, the question of
whether there are differences in overall gregariousness
between animals is also interesting: perhaps some indi-
viduals are found in consistently larger groups than
others. We know of no published test for differences in
overall gregariousness among individuals, although vari-
ation in gregariousness among classes has been examined
by Underwood (1981) and Pepper et al. (1999) using
variants of a measure often called the typical group size.
The typical group size of an animal is the mean group size
that it experiences (Jarman 1974). The MBFB method, and
its within-period permutation modification, allow varia-
tion in typical groups sizes among individuals to be tested.
The test statistic, then, is:
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where x(g,i) Z 1 if animal i was a member of group g, and
x( g,i) Z 0 if animal i was not a member of group g.
Significantly large values of the test statistic indicate that
some animals are consistently found in particularly large
groups and others in particularly small groups.

In the case of the between-period permutation method,
there is no simple extension to examine individual differ-
ences in gregariousness, as the number of associates of
each individual in each sampling period is constrained.
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Figure 1. Root mean square (RMS) errors in overall (straight line; standard deviation of association indexes) and dyadic (dashed line) P values
for six simulated data sets with the number of flips per permutation (n), for populations of eight individuals (left) or 32 individuals (right), and

using either the total-matrix permutation method (a), within-sample permutation method (b), or between-sample permutation method (c). In

all cases there were 200 sampling periods, mean group size was 3 (i.e. probability of an individual being in a particular group was 3/population

size), and the simple-ratio association index (Cairns & Schwager 1987) was used. With populations of eight individuals, each run took
t Z 100 s, there were 10 runs for each combination of the number of flips and permutation method, and there were two groups per sampling

period (except for the within-sample permutation method when there were 10 groups per sampling period). With populations of 32

individuals, each run took t Z 500 s, there were five runs for each combination of the number of flips and permutation method, and there were
16 groups per sampling period. RMS errors were calculated by comparing the P value(s) for any run with ‘baseline’ P values from running the

routine with nZ 100 flips per permutation over 10 000 s (with eight individuals) or 50 000 s (with 32 individuals).
However, random distributions of numbers of associates
could be generated by permuting identities of the individ-
uals in each sampling period (i.e. randomly permuting the
name labels in Table 3 as in the Mantel test; Schnell et al.
1985), and examining the distribution of a test statistic
such as the standard deviation of the mean number of
associates of each individual over sampling periods during
which it was identified. We have not tried this possibility.
These techniques of examining differences in overall

gregariousness have some of the benefits of the MBFB
methods. P values can be calculated for each individual
(the proportion of permutations with typical group size
for that individual greater than the real typical group size
for that individual; cf. dyadic P values), to identify
individuals with significantly large or small typical group
sizes. Another potential extension is to examine variation
in gregariousness between classes of individuals, so that
the tested hypothesis is something like: ‘do males differ in
the number of females that they associate with?’
Conclusion

Both our own use of these permutation tests to examine
preferred/avoided associations, and our reading of their
usage by others, have confirmed that they are important
tools in the analysis of social structure and that they are
flexible, but they have to be used carefully. Users should
carefully consider the most appropriate permutation
method, the test statistic(s) to be used, and should ensure
that enough permutations have been carried out to
stabilize P values. Two particularly important issues that
have come to light are the misuse of dyadic P values as
measures of the strength of association; and the frequent
need for considerably more permutations to stabilize
dyadic P values than to stabilize overall P values.
In carrying out these tests, several more general issues

also need careful consideration. These include the choice
of association index and whether or not to correct P values
for multiple comparisons if dyadic associations are being
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tested. Cairns & Schwager (1987), Ginsberg & Young
(1992) and others consider the choice of association
index; we have also analysed data sets sequentially using
two or more association indexes to investigate the robust-
ness of the results with respect to choice of association
index. Even when there are moderate numbers of indi-
viduals in the study population, many dyads may be being
tested, and so correcting for multiple comparisons will
have a major impact on the power of the tests. For
instance, with 20 individuals, there are 190 possible
dyads, and the critical P value using the Bonferroni
procedure for an a of 0.05 becomes 0.0003.

Table 4. Testing for preferred or avoided associations between
classes ‘M’ and ‘F’ using the total-matrix or within-period method:
flips are made only within the F class of group–individual matrix

Individual/Class

A B C D E F G

Group M M M F F F F

a 1 1 0 0 0 0 0
b 1 1 1 1 0 0 0
c 1 1 0 0 0 0 0
d 1 1 1 1 0 0 0
e 0 0 1 0 1 1 1
f 0 0 1 0 0 1 1
g 0 0 0 0 1 1 1
h 0 0 0 0 0 1 1
i 0 1 0 0 0 0 1
j 0 1 0 0 0 1 1
k 0 1 0 0 0 1 0
l 1 0 1 0 0 0 0
m 0 0 1 0 1 0 0
n 1 0 0 0 1 0 0
o 1 0 0 0 1 0 0
p 0 0 1 1 0 0 0
q 1 0 0 1 0 0 0
r 1 0 1 1 0 0 0
s 1 0 1 1 1 0 0
t 0 0 1 0 1 0 0

Table 5. Testing for preferred or avoided associations between
classes ‘M’ and ‘F’ using the between-period permutation method:
flips are made, and test statistics calculated, only within the bold
areas of the association matrix

Individual/Class

A B C D E F G H
M M M F F F F F

A M d 1 0 0 0 1 0 1
B M 1 d 1 1 0 0 1 1
C M 0 1 d 1 1 1 1 0
D F 0 1 1 d 0 1 0 0
E F 0 0 1 0 d 0 1 1
F F 1 0 1 1 0 d 0 0
G F 0 1 1 0 1 0 d 1
H F 1 1 0 0 1 0 1 d
In this paper we have described two potentially useful
modifications of the original methods, but more are
possible (see Whitehead 1999 for additional ideas).

This research was funded by the Natural Sciences and
Engineering Research Council of Canada. Thanks to Bruce
Smith for statistical advice and to John Pepper for his most
constructive review of the manuscript.
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